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SUMMARY 

Using the results published by Helfferich and Klein, an exact solution of the ideal 
model of chromatography (infinite column efficiency) is derived, giving the band 
profiles for the two-component elution problem in the case when the equilibrium 
isotherms are given by the classical competitive Langmuir equations. The variations of 
the band profile of each component during elution is analyzed and the interactions 
between the two profiles are investigated. Two concentration shocks appear, one at the 
front of each component elution profile. The chromatogram is separated into three 
zones. The first zone, between the two concentration shocks, contains only the first 
component. The second zone, immediately after the second shock, contains a mixture 
of the two components. The third zone, at the rear, contains only the second 
component. The profiles of the two components in the three zones and their 
concentrations on both sides of the second shock are given by simple analytical 
equations. If the sample is injected as a rectangular pulse, it takes some time to erode 
the corresponding concentration plateaux of each component. On both sides of the 
mixed zone, a second concentration plateau appears for each component. The heights 
of these plateaux remain constant as long as they are present. The first component 
plateau disappears rapidly, but the second component plateau, whose formation 
explains the “tag-along” effect, remains stable as long as the second zone has not 
vanished and decreases progressively after the two bands are resolved. 

Comparison between the profiles obtained as solutions of the ideal model and 
those calculated using the program of the semi-ideal model, which accounts for the 
finite efficiency of actual columns, shows very good agreement when the column 
efficiency exceeds a few hundreds to 1000 plates. The extent of the agreement depends 
on both the sample size and the column efftciency. The concentration shocks are 
replaced by shock layers whose thickness is proportional to the column plate height, 
but depends also on the shock height. The thickness of the second shock, which 
separates the first and second zones, seems to depend much more than the thickness of 
the first shock on the actual column efficiency. 
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INTRODUCTION 

In a previous paper’, we discussed the derivation of an analytical solution of the 
ideal model of chromatography in the case of a two-component problem and for the 
injection of a rectangular pulse of mixture (elution). This solution further assumes that 
the equilibrium isotherms of the two components in the chromatographic phase 
system is Langmuirian. We used classical results of the theory of systems of non-linear, 
quasi-hyperbolic partial differential equations applied to the case of hyperbolic 
systems such as those encountered in the classical model of ideal chromatography2T3. 
The most important concepts used in this first derivation were the association of 
a velocity to each value of the concentration and the possibility for the system to 
propagate concentration shocks or discontinuities 4~ Accordingly, the analytical . 
solution obtained is composed of two concentration discontinuities, the first affecting 
the first component only and the second one affecting both, and of four continuous 
concentrations profiles that have relatively simple equations’. 

The purpose of this paper is to show that the same results can be derived using 
the general theory of the ideal model of chromatography constructed by Helfferich and 
Klein’ and based on the use of the concept of coherence and of the h-transform. The 
advantage of this second solution is that it makes use of a theoretical tool specifically 
developed for handling problems of application of the ideal model of chromatography 
and, accordingly, the analytical solution of a two-component problem appears simpler 
to derive in that way. A first drawback, however, is that the approach derived by 
Helfferich and Klein’ has received modest attention from chromatographers who are 
not familiar with its distance-time diagrams or with the concepts of coherence and of 
composition trajectories. A second drawback, which may in part explain that first, is 
that Helfferich and Klein essentially used their approach to investigate displacement 
chromatography’. This mode of chromatography is claimed by some’** to be the most 
efficient one for preparative applications. Most users have not yet accepted this last 
point and, in practice, elution remains the mode of choice for most of the 
chromatographic purifications carried out in biotechnology laboratories. In addition 
to the experimental difficulties associated with the need to find a suitable displacer for 
each separation, this resistance appears to be due to the requirement of a close to total 
recovery yield by workers who have spent much time and energy in the preparation of 
minute amounts of rare and valuable biochemicals. 

More important, the approach of Helfferich and Klein is closely related to the 
ideal model and suffers from its unrealistic assumption of an infinitely efficient 
column. The shock theory suffered originally from the same difficulties, but is has been 
completed later by the concept of the shock layer, also derived from aeronautical 
researchg, which gives it a much deeper physical relevance and permits, in chromato- 
graphy, the convenient handling of columns of finite efficiency. A shock layer 
propagates at the same velocity as the shock but has a thickness proportional to the 
column height equivalent to a theoretical plate lo In contrast, it has not been possible . 
yet to correct the results derived using the approach of Helfferich and Klein for the 
finitecolumn efficiency which is responsible, in both the displacement and elution 
modes, for a considerable decrease in the recovery yield”. 
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THEORY 

The theory developed by Helfferich and Klein’ is based on the use of the concept 
of coherence, on the determination of distance-time diagrams to represent the 
migration of band profiles and their progressive transformation and on the use of the 
h-transform to calculate the composition trajectories in these diagrams. 

Helfferich and Klein called “coherent” those boundaries which migrate in a way 
such that “a given concentration of one species [then] remains accompanied by the 
same set of concentrations of all other species”i2. This concept of coherent 
boundaries, first developed for breakthrough curves, has been extended to the 
migration of concentration pulses. 

In principle, the theory of Helfferich and Klein, and especially the h-transform 
itself, should be valid only for stoichiometric retention mechanisms, such as ion 
exchange. Its extension to other retention mechanisms such as adsorption is 
straightforward, however, by assuming a fictitious component guaranteeing stoichio- 
metric exchanges between the mobile and stationary phases. 

Helfferich and Klein13 published distance-time diagrams that describe the 
process of migration, dilution and progressive separation of the bands of the two 
components of a binary mixture injected as a rectangular pulse1 3. These diagrams have 
been calculated in the case when the equilibrium isotherm of the two components 
studied between the phases of the chromatographic system are given by the classical 
Langmuir isotherms. Hence these diagrams apply to the case we are investigating. 
However, they calculated only the trajectories of a given concentration, not the elution 
profiles of the two bands. This derivation is carried out here. We do not report the 
derivation of the trajectories, for which the interested reader is referred to the original 
work’. In the second part of this paper, the equations obtained for the different parts 
of the double band elution profile are compared with the results of the semi-ideal 
modelr4. 

Preliminary calculations 
The principle of the h-transform is to replace the concentrations of the three 

compounds present in the band (the two components of the mixture and the fictitious 
compound required as explained above) by the two roots of an equation in h, where h is 
a dummy variable. 

In the case of Langmuir competitive isotherms for the two components of 
a binary mixture eluted by a pure mobile phase, the h-transform is written as 

iz,,[(hai,Z:- 1 - ’ =O 1 
where the coefficients ai and bi are those of the Langmuir isotherms (see Table I, eqn. 
1.1) and Ci is the local concentration of component i in the mobile phase. 

This equation has two roots, hI and h2. In contrast to the notation used by 
Helfferich and Klein, we interchange the subscripts 1 and 2, using the subscripts 1 for 
the first eluted component and the subscript 2 for the second one. The subscript 
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3 represents the dummy component, as in ref. 7. As chromatographers classically use 
CY = a& for the selectivity of the phase system, we use /I where they use a, for 

8= 
a2 a2 a2 4 

ci22 ctzl a23 = -.--.- = - 
a2 at R alR (2) 

since for the fictitious solute a 23 = a21R, with R = Ziqi/CiCi = constant. The value of 
that constant can be chosen arbitrarily in the interval (0, al). qi and Ci are the 
concentrations of the compound i in the stationary and the mobile phases, respectively, 
at equilibrium. 

The solutions of eqn. 1 are: 

h =s+J(s2-4P) 
1 2 

and 

h 
2 

= s - J(S” - 49 
2 

(3) 

(4) 

where S and P are the sum and the product of the roots h1 and h2, respectively. S and 
P are derived by reducing eqn. 1 to its canonical form: 

S = hl + h2 = a + 1 + b2C2 + ablCl (5) 

and 

P = hl hz = ~(1 + b&z + blC1) (6) 

Particular values of hi used later are those corresponding to the pure eluent 
(C, = c2 = 0): 

h;= 1; hi = a2/al = a (7) 

and the values, h”, and h& which correspond to the injected sample, and which are 
obtained by inserting the initial concentrations C1 and CO, in eqns. 5 and 6. 

In order to compare the results derived in this paper with those calculated in our 
previous work, we need to derive a relationship between the roots of eqn. 1, h”, and hi, 
and the roots, rl and r2, of the Offord equation, i.e., the equation which gives the 
characteristics of the Clairaut differential equation associated with the system of 
partial differential equations of the ideal model (eqn. 22 in ref. 1). This equation 
establishes a relationship between the concentrations of the two components which is 
valid as long as they coexist in the column. The Offord equation is written as 

crblC;r2 - (u - 1 + ublCY - b2C2)r - b2C; = 0 (8) 
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Comparison between the roots of eqn. 1, at Ci = q, and those of eqn. 8 gives 

h; = 1 + (b2 + abIr2)C2 = 1 + &(C, - C;/rI) = 1 + b&j = f (9) 

where y is defined in ref. 1 as (ablrl + b,)/(b, + blrl) and r1 is the positive root of eqn. 
8. CT is the concentration of the plateau of the second component which appears 
immediately after the end of the second zone of the chromatogram’ and is equal to 
C, - colr1. 

Finally, the adjustable time, z, considered in the equations derived by Helfferich 
and Klein’ is 

U Z 

z=z ‘-u ( > 
and the pulse time (AZ) is 

where Fis the phase ratio, tp the width of the rectangular pulse of sample injected in the 
column and R is defined in eqn. 2. 

TABLE I 

DEFINITIONS 

(1) Equilibrium isotherms: 

qi = a&/(1 + blCl + b&J 

where qi and Ci are the concentration of component i at equilibrium in 
the stationary and mobile phases, respectively 

(1.1) 

(2) Relative retention: 

a = az/al 

(3) Constant y: 

ablrl + b2 

’ = blrl + b2 

(4) Roots of the Clairaut differential equation: 
They are the roots (rl > 0, r2 < 0), of the following equation: 

(1.2) 

(1.3) 

ab,C~r* -(a - 1 + ab,q - bzCz)r - b,q = 0 (1.4) 

(5) Loading factor: 

L 
bzC;t, b,N, bzNz 

f.2 =-= =- 
to R.2 - to F”(‘i.2 - to) eSL&,, 

(I.61 
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Table I gives some useful delinitions and equations used in the following 
sections. 

Trajectory of the second component shock and time of certain events 
When a rectangular pulse of the binary mixture is injected, and the two 

components have competitive Langmuir isotherms, the front of each concentration 
profile is sharp (discontinuity) and the rear is diffuse, or continuous”. Consider the 
plateau at the top of this rectangular injected pulse. The front part moves as the shock, 
i.e., more slowly than the rear which migrates as a continuous profile’, so the width of 
this plateau narrows progressively. 

In a distance-time diagram, the coordinates of the intersection between the 
trajectory of the sharp front (shock) of the second component and the beginning of the 
continuous part of the lirst component profile (point I in ref. 1) is given by eqn. A.77 in 
ref. 7: 

and 

h;h;h;* 
‘0 = (h; _ h;)b A’ (12) 

h”, 
TO =--At 

Inserting eqns. 2, 6, 7, 10, 11 in eqns. 12 and 13 gives 

(1 + blC; + b&02)* 

” = utp’ Fa2(l + b,C’; + b2c02 - hz/a) 

Fa2 
1 + blc0, + bzc”, 

(13) 

(14) 

(15) 

Eqns. 14 and 15 are identical with eqns. 33 and 34 in ref. 1 if hi is replaced by its value 
given by eqn. 9. 

7: 
The trajectory of the front of the slower band beyond Zis given by eqn A.85 in ref. 

ZA,(r) - - %+,‘h;(t - Ar) + J(h; - &kd* (16) 

Combining eqns. 2, 6, 7 and 9-l 1 with eqn. 16 and solving for t gives 

t=tp+l+ u Y[&q - Jyizzzqtp] (17) 

which is identical with eqn. 38 in ref. 1. Replacing z by L and z/u by to (dead time) in this 
equation gives the retention time of the second component, i.e., the elution time of the 
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second discontinuity of the chromatogram (eqn. 40 of ref. 1). Eqn. 17 remains to 
represent the trajectory of the second component shock as long as there is a mixed 
band, i.e., until the separation is complete. The separation between the two bands is 
just complete at the “crossover point”, the coordinates of which are given by eqns. 
A.88 in ref. 7: 

h;h;hy(h; - h;)Az 
2,112 = 

vd - M2P 

and 

[ 

h;(h; - hi) 
71/2 = 1 + (& _ &)2 1 *r 

Combining eqns. 2, 6, 7 and 9-l 1 with eqns. 18 and 19 gives 

2. t,(b,Cy + b2G + 1 - I/y) 

Fa2 

and 

tl,2=t,+y(l +9) 

(18) 

(19) 

(20) 

which are identical with eqns. 69 and 70 in ref. 1, giving the trajectory of the point 
where the resolution between the two bands is just complete. Beyond that point, the 
slow component band begins to migrate alone but, first, the plateau which has 
appeared during the progressive separation between the bands of the two components 
shrinks and disappears. During that time, the trajectory of the front shock of its band is 
given by the relationship A.93 in ref. 7: 

h;h;h; -- Zd,W - 
s 

h: - hi. Az 
’ + h; - h; 

Combining this equation with eqns. 2-11 gives 

tp(l + b,G + bzc”, - I/y) 

U-l 1 

(22) 

(23) 

This equation is equivalent to eqn. 72 in ref. 1. While the second band front migrates on 
this trajectory, the concentration plateau of component 2 shrinks. It disappears at 
point L (see ref. 1) of coordinates given by eqn. A.56 in ref. 7: 

h;2h;h’l(h: - h;)Ar 

z2 = (h; - h;) (h; - hi)/3 
(24) 
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and 

z2= 1+ 
[ 

h;(hy - hi) 

(h; - h;)(h; - hi) 1 AZ 

These equations may be rearranged as the previous ones into 

a-l 
22 = -. z1/2 

a-3 

and 

(25) 

(27) 

which are identical with eqns. 73 and 74 in ref. 1. 
Finally, eqn. A.93 in ref. 7 gives the trajectory of the second component front 

after the separation has been completed. After rearrangement, this equation becomes 

v-9 

which is equivalent to eqn. 75 in ref. 1, with z = L. 
The main equations in this section, which give the position of the most important 

events on the chromatogram, are summarized in Table II. The corresponding points 
are shown in Fig. 1. 

Equations for the continuous parts of the profiles 
As the continuous parts of the concentration profiles of the first and second 

components were given by Helfferich and Klein’ as the H-function roots, we have to 
transform the h roots into concentrations. This can be done using the general equation 

cj = $=l(hiaJal - 1) 

bj$‘= l,i+j(aj/ai - 1) 

In the case of two solutes we have 

c 

1 
= @l/a - 1)&/a - 1) 

bl(l - 4/a 

c 

2 
= (h - l)(hz - 1) 

b2@ - 1) 

(29) 

(30) 

(31) 

In order to obtain the equations for the continuous parts of the profiles in the different 
zones of the chromatogram, we need to find first the roots hl and h2 of the H-function 
in these zones. 
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TABLE II 

RETENTION TIMES OF THE CHARACTERISTIC FEATURES OF THE CHROMATOGRAM IN 
FIG. 1 

(1) Second shock: 
- 

tIC.2 = I, + to + lJ(t& - lo)(l - Jw2 

(2) End of the first component band: 

(11.1) 

2s = t, + 10 + y,,; 1 - to) (11.2) 
a ’ 

(3) End of the second component concentration plateau: 

Y(Y - 1) 
ts. = tn + -----ho.t - to) 

a2 

(4) End of the second component band: 

t, = t, + t;,2 

(5) First shock: 

(11.4) 

The retention time of the first shock cannot be calculated analytically. It is derived by calculating 
the lower boundary of the finite integral of the profiles of the first component (eqns. 111.1 and 
111.2, Table III). This integral is the mass of first component injected’. 

For the diffuse rear part of the slower band profile, the trajectory in 
a distance-time diagram associated with a certain concentration can be derived from 
eqns. A.80 and A.81 in ref. 7: 

z - AZ 
z’;(z) = hi2h; . - 

B 
for z < z2 

and 

z - AT 
z(h2,z) = hgh; . - 

P 
for z < z~,(~) (33) 

Accordingly, at the column exit (z = L), where we have h; = a and a2 = (t;,2 - 
to)/Ft,, the h2 root of the H-function in the different zones of the chromatogram is 
obtained by combining eqns. 2, 10, 11, 32 and 33: 

h2 = 
J 

G.2 - to 

t - t, - to 
(34) 
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Fig. 1. Example of the solution of the ideal model for a two-component mixture when the two bands are not 
completely resolved at the end of the column. 1 = Front shock of the first component; 2 = first arc of the 
first component band; 3 = rear shock of the first component and front shock of the second component; 4 = 
second arc of the first component band; 5 = first arc of the second component band; 6 = concentration 
plateau of the second component band; 7 = second arc of the second component band. The retention times 
of the second concentration shock (3), the end of the first component band and of the mixed zone, the end of 
the concentration plateau (6) of the second component and the end of the second component zone are given 
in Table II. The equations for the continuous parts of the concentration profiles of the first component 
[between the two shocks (2) and after the second shock (4)] and of the second component (between the 
second concentration shock (5) and the beginning of the plateau and after the end of the plateau (711 are given 
in Table III. Experimental conditions: relative retention, a = 1.20; relative composition, 1: 1; feed 
concentrations,. q = c, = 2.5 M; column length, 25 cm; phase ratio, F = 0.25; kb,, = 6.0; injection 
duration, 1 s. Retention times of the fronts: 193.3 and 232.7 s. Retention times of the rear plateau of the 
second component profile: 259.4 and 279.3 s. Retention time of the second component at infinite dilution: 
328 s. Concentrations of the first component: at the top of the first shock, 0.091 M, at the front of the second 
shock, 0.0027 M; at the rear of the second shock, 0.014 M. Concentration of the second component: at the 
top of the second shock, 0.046 M; at the rear plateau, 0.033 M. 

h2 = h; = 1 for t < tR.2 (36) 

(see Tables II and III and Fig. 1 for the definition of tb and similar parameters). 
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TABLE III 

EQUATIONS FOR THE CONTINUOUS PARTS OF THE CHROMATOGRAM SHOWN IN FIG. 1 

(1) First arc of the first component band: 

I a-l 1 
t = t, + to + (tR.1.0 - to) 

(1 + blC,Y 
- Lf*,,--. 

a [(a - 1)/a + blCl]’ 

(2) Second arc of thefirst component band: 

(111.1) 

(111.2) 

(3) First arc of the second component band: 

(4) Second arc of the second component band: 

(111.3) 

(111.4) 

Similarly, for the diffuse rear part of the faster pulse, the trajectories associated 
with a certain concentration (i.e., value of h,) in a distance-time diagram can be 
derived from eqns. A.84 and A.90 in ref. 7: 

T - AT 
z(hl,z) = h:h;.- 

B 
for z G z~,(~) (37) 

and 

z(hl,z) = 
1 _(hY - hi) (hi - hi) 

(h, - h;)’ 11 AT for ZAP G 2 G Q,(~) (38) 
Accordingly, at the column exit, the values of hl in the different zones of the 
chromatogram are given by 

hl = J yt*!;-_*“, 
P 0 

for tR,2 < t < *B (39) 

hl =h; =u for ts < t (40) 

and 

t = t, + to + ““‘“J; to) - (a - l)b&Y$t; (h ! 1)2 for tR,l < t < *R,2 c41) 

1 1 
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Combining equations 9,34-36 and 3941 with eqns. 30 and 3 1 gives eqns. 43,28 and 47 
in ref. 1 (the two slanted parts of the rear profile of the second component band, before 
and after the intermediate plateau and the concentration of this plateau) and eqns. 63 
and 44 in ref. 1 (the two parts of the rear profile of the first component band, before and 
after the second shock of the chromatogram). 

The concentrations of the first and second components at the second shock are 
obtained as follows. In all instances, h1 is obtained by solving eqn. 41 with t = tR,Z. On 
the front side of the second shock, hz is equal to 1; on the rear side of the second shock, 
h2 is equal to a/y (eqn. 35). The concentrations are obtained by substituting 
appropriate values of h1 and hz in eqns. 30 and 3 1. The results are identical with eqns. 
51, 52 and 55 in ref. 1 (see Table IV). 

The equations giving the continuous parts of the profile are summarized in Table 
III. The position of the corresponding arcs are indicated on Fig. 1. The values of the 
concentrations in the most important points of the chromatograms are summarized in 
Table IV. 

TABLE IV 

EQUATIONS FOR SOME SPECIFIC CONCENTRATIONS 

(1) Maximum concentration of the second component: 

(2) Concentration of the first component on the front side of the second shock: 

c Ml - Wal + JZ 
14’ = 

(3) Concentration of the first component on the rear side of the second shock: 

C 
rl (l-a)+& 

--. 
lsM - bZ + ablr, 

- 

1-A 

(4) Concentration of the second component plateau: 

a-l 
CAB = 

bz + ab,r, 

(5) Concentration of the first component plateau: 

(IV. 1) 

(IV.2) 

(IV.3) 

(IV.4) 

(IV.5) 

(6) Maximum concentration of the first component: 
As the retention time of the first shock, the maximum concentration of the first component (i.e., 
the front shock height) cannot be calculated analytically. This concentration is obtained by 
placing the retention time of the first component shock in eqn. 111.1. 
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RESULTS AND DISCUSSION 

In this section we first discuss the mechanism of the progressive separation of the 
bands of a binary mixture, as it can be derived from the profiles given by the analytical 
solution of the ideal model. Then we compare the profiles obtained by the analytical 
solution of the ideal model and by numerical solution of the semi-ideal model. In 
a separate publication’5, we shall show that there is excellent agreement between these 
theoretical profiles and those determined experimentally in the case when the 
components of a binary mixture equilibrate between the two phases of the chromato- 
graphic system as predicted by the competitive Langmuir isotherms. 

Progressive separation of the bands of the two components 
We have calculated the band profiles predicted by the equations in Tables II-IV 

for two binary mixtures of relative compositions 1:3 and 3:l. In the following 
illustrations, Figs. 2a-6a correspond to the 3:l muxture and Figs. 2b6b to the 1:3 
mixture. The numerical values used for the parameters of the isotherms (eqn. I-l, Table 
I) are given in Table V. The feed concentrations of the two components are 1.25 and 
3.75 M, respectively. The duration of the injection pulse, t,, is 1 s. The value of the 
relative retention, tl, is 1.30. The mobile phase velocity is 0.6 cm/s. The different 
chromatograms shown in Figs. 2-7 correspond to columns of increasing length. In all 
these figures, curves 1 and 2 are the elution profiles of the first and second components, 
respectively, predicted by the analytical solution of the ideal model derived from the 
equation in Tables II-IV. The profiles 3 and 4 are their elution profiles calculated using 
the numerical solution of the semi-ideal model. These profiles are discussed in the next 
section. Insets in the figures illustrate some particular features of the chromatogram. 

Fig. 2a and b show the elution profiles of a binary mixture with a relative 
retention equal to 1.30 at the exit of a l-cm long column. This length is less than z. (eqn. 
12) and the plateaux of the two compounds corresponding to the injection pulse are 
not completely eroded yet. However, two plateaux at the concentrations Cr,* and C2,B 
(Table IV) have formed. The first corresponds to an increase in the concentration of 
the first component, due to the displacement effect caused by the second component. 
The second plateau, on the tail of the second component, can be seen in the data file 
used to draw the plot but it is not visible on the figure. It can be distinguished on the 
inset in Fig. 2a, between 12 and 14 s. There is a distinct separation between the fronts of 
the two bands in Fig. 2a. This separation exists also in Fig. 2b, but it is smaller and is 

TABLE V 

NUMERICAL VALUES OF THE COEFFICIENTS OF THE COMPETITIVE LANGMUIR ISO- 
THERMS USED FOR THE TWO COMPOUNDS STUDIED 

The column saturation capacity for the first component is 1.59 mmol/cm (4.6 mm I.D.). 

Coefjcien t Value 

al 

b”: (limo]) 

b2 (l/mol) 

24 
31.2 (a = 1.30) 

2.5 
3.25 
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barely visible. The band of the minor, first component (Fig. 2b) begins with a very thin 
spike which is easily explained by the mathematical properties of the solution’ but has 
no chance of being seen in the experimental profiles because of the intense diffusion 
flux close to a shock layer. 

Fig. 3a and b show chromatograms obtained under conditions such that the 
injection pulse plateau has just disappeared (L = zo, see eqn. 12). The corresponding 
column lengths at which this phenomenon takes place are different with the 3: 1 and the 
1:3 mixtures, being 1.20 and 1.35 cm, respectively. The plateau of the first component, 
at C1,A, begins immediately to erode away and disappears rapidly. On the other hand, 
the plateau of the second component at C z.B becomes longer and longer, while the two 
shocks 
b than 

becomes further apart. As the column length is barely longer for Fig. 3a and 
for Fig. 2, the separation between the two bands is hardly improved. 

I I I 

4 6 8 

Time(S) 
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Fig. 2. Band proliles of the components of a binary mixture at the end of a l-cm long column. Mobile phase 
flow velocity, 0.6 cm/s; flow-rate for a 4.6 mm I.D. column, 4.8 ml/min; a = 1.30; kb,, = 6.0; phase ratio, 
0.25; porosity, 0.80. Solution of the ideal model: curves 1 (first component) and 2 (second component). 
Numerical solution of the semi-ideal model with H = 0.01 cm: curves 3 (first component) and 4 (second 
component). Insets: numerical solution of the semi-ideal model with H = 0.001 cm. (a) Relative feed 
composition: 3:l. Concentrations of the components in the feed: CT = 1.25-M, C; = 3.75 M. L,,a = 
3 1.25%. Inset: solution of the ideal model for the second component (curve 2) and solution of the semi-ideal 
model with H = 0.001 cm (curve 4). (b) Same as (a), including total sample size, except relative feed 
composition = 1:3. q = 3.75 M, C; = 1.25 M. LJ,* = 93.75%. Inset: solution of the ideal model for the 
first component (curve 1) and solution of the semi-ideal model with H = 0.001 cm (curve 3). 

An intermediate chromatogram, on which a partial separation takes place 
between the two bands, is shown in Fig. 4a and b, both of which correspond to 
a column length of 10 cm. In the first instance (Fig. 4a), the first component has a small 
shock on its rear profile, at the time as the front shock of the second component takes 
place. The displacement effect of the first component by the second is weak. The rear 
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shock of the first component profile corresponds to an abrupt decrease in the amount 
of that component associated with the surge of the second component concentration 
which takes place at its front shock. The plateau at the end of the second component 
profile is long and this profile is spread over a period that considerably exceeds the 
width of the profile of the same amount of that compound when injected pure, under 
the same conditions. In Fig. 4b, the concentration discontinuities at the second shock 
are much more important that in Fig. 4a. The displacement effect of the first 
component by the second is very significant, because now the surge of concentration of 
the second component is very strong. The first component band has a very narrow, tall 
first part, followed by a small tail which lasts about twice as long as the first part of the 
band. On the other hand, the plateau on the rear part of the second component profile 
is narrow and its concentration is high. It will not result in a marked “tag-along” effect. 

Fig. 3. 

-1 

Time(s) 
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Fig. 3. Same as Fig. 2, but profiles at the end of a column such that the injection pulse plateau has just been 
eroded. (a) Same as Fig. 2a, but column length = 1.20 cm. Lfsz = 26%. Inset: same as main figure, but H = 
0.001 cm for the solution of the semi-ideal model. (b) Same as Fig. 2b, but column length = 1.35 cm. L,,, = 
69.4%. Inset: same as main figure. but H = 0.001 cm for the solution of the semi-ideal model. 

It is obvious in Fig. 4b that under the conditions selected, the first component can be 
recovered in a reasonable yield, with a high degree of purity, but that the same is not 
true for the second component. 

The chromatograms in Fig. 5a and b correspond to the column length for which 
the mixed band or zone II of the chromatogram just disappears. The two bands are 
totally resolved for the first time. The shock of the second component is eluted just 
when the concentration of the first component becomes zero, the rear profile shock of 
this first component has just vanished, but there is still a plateau at the top of the 
second component profile. This phenomenon takes place for column lengths that 
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depend on the composition of the feed. The column length is equal to zlj2 (see eqn. 20). 
In Fig. Sa and b, they are 19.7 and 22.2 cm for the 3: 1 and the I:3 mixtures, respectively. 

Beyond the point where the two bands are resolved, they continue their 
migration. The plateau at the top of the second band erodes progressively because the 
velocity associated with a concentration on a continuous profile is higher than the 
velocity of a shock from the baseline to that same concentration’. The point at the 
back of the plateau of the second component moves faster than the point at its front, so 
the plateau narrows down and eventually disappears. Fig. 6a and b show the 
chromatograms at the column lengths for which this happens. The phenomenon takes 
place faster when the concentration of the second component is higher, because the 
plateau is much narrower (compare Fig. Sa and b). The corresponding column length 
is given by eqn. 26. It is much shorter in Fig. 6b (L = 28 cm) than in Fig. 6a (L = 65.9 
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Fig. 4. Same as Fig. 2, except column length = IOcm. (a) Same as Fig. 2a, 3:l mixture. L,,, = 3.1%. Inset: 
concentration profiles of the two components obtained as solution of the semi-ideal model, with tl = 0.001 
cm (N = 10 000 theoretical plates). (b) Same as Fig. 2b, 1:3 mixture. L,, = 9.3%. Inset: as for inset in (a). 

cm), and the resolution between the two bands when the plateau disappears is much 
better in Fig. 6a. 

When the plateau at the top of the second component band has disappeared, this 
band continues its migration as if it had never interacted with the first component 
band’. The band profile is identical with that for a band of the same amount of that 
compound injected pure (see Fig. 7). This is not true for the band of the first 
compound, which alwtys remains narrower and taller than if no interaction had taken 
place. Fig. 8 illustrates this phenomenon. It shows a comparison between the band 
profiles of the same amount of the same 1:3 mixture derived from the single compound 
and from the two-component ideal model solutions. In the case of the two-component 



S. GOLSHAN-SHIRAZI. G. GUIOCHON 

!- 
80’0 90’0 WO 10’0 OO’( 

( I/lOuJ 1 -Jo3 

Fl 
OL’O 80’0 90’0 PO’0 zo’o 00’0 

( JPJJ) ‘~UO3 



0 700 750 800 

Time (S 

(a) 

900 950 1060 11 

(b) 

2 

300 350 

Time (S) 

Fig. 6. Same as Fig. 2, but profiles at the end of a column such that the plateau at the top of the second component band is just totally eroded. (a) Same as Fig. 2a, 3: 1 
mixture, but column length = 65.9 cm. L,,, = 0.47%. (b) Same as Fig. 2b, 1:3 mixture, but column length = 28.0 cm. .$,, = 3.35%. 
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Fig. 7. Same as Fig. 2b, but at the end of a 50-cm long column. Lf,2 = 1.87%. 

model, the solution obtained is that already shown in Fig. 7; this model takes the band 
interaction due to the competitive adsorption isotherms into account. The single 
compound model gives the band profiles which would be observed for compounds that 
do not interact. The profiles obtained for the second component are identical. In 
contrast, the profiles obtained for the first component are markedly different. The 
displacement of the first component by the second increases the resolution between the 
bands and also increases the maximum concentration of the list component. 

Comparison between the profiles predicted by the ideal and semi-ideal models 
In order to achieve as realistic a simulation as possible, we have assumed that the 

column height equivalent to a theoretical plate, ZY, is constant along the whole column. 
In Figs. 2-7, praliles 3 and 4 are those calculated using the semi-ideal model and 
selecting the integration increments in order to simulate a column with an HETP of 
0.01 cm. This is’ a low efficiency for a high-performance liquid chromatographic 
column, but the simulated column is operated at a very high velocity of 0.6 cm/s 
because it has been shown that maximum production rate in preparative chromato- 
graphy is achieved at high mobile phase flow velocities 16. Under these conditions, this 
HETP value would correspond to a well packed column (A = 1 in ‘the cIassical.Knox 
plate-height equation”) filled with 15pm particles and operated at a reduced 
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Fig. 8. Influence of the interaction term in the isotherm equation on the band profile of two well resolved 
compounds. Comparison between the solutions of the single-compound and the two-component ideal 
models for the same amount of the same sample as in Fig. 7. Profile 1, first component in a binary mixture; 
profile 2, second component in a binary mixture or alone (the two profiles cannot be distinguished); profile 3, 
first component alone. 

flow-rate of approximately 90. As a term of comparison, profiles 3 and 4 in the insets in 
Figs. 2,3 and 4 were calculated with a ten times lower HETP value. In practice, most 
experimental conditions correspond to intermediate values of the HETP. 

The consequence of the choice of the HETP value is that, for very short columns 
(Fig. 2a-3b) which have a very low efficiency, the agreement between the profiles 
derived from the analytical solution of the ideal model and the profiles calculated 
numerically is poor. The apparent axial diffusion, which includes the consequences of 
a finite rate of mass transfer between the two phases, explains the shallow profiles 
3 and 4 in Figs. 2 and 3. The concentration shocks have been considerably relaxed. 
Note, however, that the time scale is in seconds and that the front parts of these profiles 
last about 0.5 s (Fig. 2) to 1 s (Fig. 3). As predicted by the ideal model, however, the two 
fronts are nearly coincidental in Figs. 2b and 3b, whereas they are separated in Figs. 2a 
and 3a. 

If we compare profiles 3 and 4 in Figs. 2a, 2b, 3a, 3b, 4a and 4b and the profiles in 
the insets in these figures, we see how the column efficiency is critical in determining 
how closely the band profile follows the prediction of the ideal model. The agreement, 
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which is poor when the efficiency is low, improves rapidly with increasing column 
efftciency and becomes very good at high plate numbers (see insets). 

For Figs. 4-7, the column efficiency is higher and the agreement between the 
profiles derived from the ideal and semi-ideal models becomes good. Although the 
front shocks are much softened and the plateaux totally eroded, the characteristic 
features of the profiles predicted by the ideal model can still be found on the profiles 
calculated with the semi-ideal model. In Fig. 4a, however, the second shock has 
disappeared from the rear of the first component profile and, correspondingly, there is 
not much of a shock layer at the front of the second component profile (curve 4). As 
shown by the inset in Fig. 4a, the slope of this front and, accordingly, the recovery 
yields and production rates for both components depend very much on the column 
efficiency. With an extremely efficient column, the band profiles obtained will be very 
close to those predicted by the ideal model. In Fig. 4b, in contrast, the second shock 
predicted by the ideal model becomes a thin shock layer on the calculated profiles. The 
tail of the first component (profile 3) is slightly larger than predicted. The plateau on 
the rear of the second component profile has disappeared. The tail of that profile 

160 150 140 

Time(S) 

Fig. 9. Comparison between the profiles derived from the analytical solution of the ideal model (profiles 
1 and 2) and the profiles calculated as solutions of the semi-ideal model of chromatography, at the outlet of 
a IO-cm column. Loading factor, L,,, = 9.4%. Relative feed composition: 1:3. Other conditions as in Fig. 2, 
except column effkiency. Profiles 3 and 4 correspond to 1000 theoretical plates. The three intermediate 
profiles correspond to 2500, 5000 and 10 000 theoretical plates. 
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(curve 4) has no inflection point. The chromatogram in the inset shows, however, that 
with an extremely efficient column a hump is observed, which is the residual of the 
plateau. 

In Fig. 5a and b, the plateaux at the top of the second band profile have 
disappeared, but the bands are wider than normal chromatographic bands. The 
calculated profiles of the first component in Fig. 5a and b and all the calculated profiles 
in Figs. 6 and 7 are very similar to those predicted by the ideal model. They are only 
slightly rounded at the top, with shock layers at the front and slightly tailing rears. 

Fig. 9 compares the profiles calculated with column efficiencies of 1000, 2500, 
5000 and 10 000 theoretical plates with the profiles derived from the analytical 
solution of the ideal model. Only the first profile (N = 1000 plates) is significantly 
different from the others. For the three larger plate numbers, the rear of the second 
component profile exhibits an inflection point at the concentration predicted by the 
ideal model for the plateau. 

CONCLUSION 

The approach developed by Helfferich and Klein7 permits the derivation of the 
elution profiles of the two components of a binary mixture in the case of an infinitely 
efficient column when the isotherms of the two components are given by the classical 
competitive Langmuir equations. Although tedious and lengthy, the derivation is 
simple and straightforward. It results in very simple algebraic equations which are easy 
to calculate. Although the profiles obtained are unrealistic, because real columns have 
a finite efficiency, they give an excellent first approximation of the actual band profiles 
obtained with columns having an efficiency larger than 1500-2000 theoretical plates, 
at values of the loading factor in excess of 1% of the column saturation capacity. 
Accordingly, these results can serve as a basis for a theory of the optimization of the 
experimental conditions in preparative liquid chromatography. More accurate results 
could then be obtained, when needed, by proceeding to numerical calculationsr4. On 
the other hand, the results derived from the analytical solution of the ideal model have 
the major advantage of showing the trends and permitting the rapid determination of 
the experimental conditions which are worthy of further detailed investigation, either 
by simulation or by carrying out actual experiments. 

Unfortunately, it is difficult to extend the analytical solution of the ideal model 
to the case of a three-component mixture. The third-degree algebraic equations 
obtained cannot be solved simply (the Cantor formulae appear to be too difficult to 
handle). Numerical solutions of these equations could be possible in any practical 
situation. It is not obvious then whether the advantage of this rapid numerical 
calculation of the shock retention times and of the different arcs of continuous profiles 
of the three components in the case of the ideal model solved by the Helfferich and 
Klein equations would compensate for the much higher accuracy of the numerical 
solution of the semi-ideal model, which correctly takes the finite column efficiency- into 
account. 
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coefficients (origin slope) in the Langmuir isotherm (eqn. 1.1) 
coefficients in the Langmuir isotherm (eqn. 1.1) 
concentrations of the first and second solutes (components of the 
mixture) in the mobile phase, respectively (eqn. 1.1) 
concentrations of the first and second solutes in the stationary phase at 
equilibrium with the mobile phase, respectively (eqn. 1.1) 
concentrations of the two components in the sample plug introduced in 
the column 
concentration of the first component plateau (eqn. IV.5) 
concentration of the second component plateau (eqn. IV.4) 
concentration of the first component on the front side of the second 
shock (eqn. IV.2) 
concentrations of the two components at the rear of the second shock 
(eqns. IV.1 and IV.3) 
phase ratio (eqn. 10) 
dummy variable (eqn. 1) 
roots of eqn. 1 
column capacity factor at infinite solute dilution (kA = Fa) 
loading factor for the mixed zone (eqn. 1.5) 
loading factor for the second component (eqn. 1.6) 
amount of the first component in the injected pulse, mole (eqn. 1.6) 
roots of eqn. 8 
linear velocity of the mobile phase (eqn. 10) 
time (eqn. 10) 
elution time of a concentration C2,n on the band tail (eqn. 11.2); this is 
also the time when ends the elution of the first component zone 
time when ends the elution of the plateau of the second component 
zone, at concentration C2.n (eqn. 11.3) 
retention times of the two concentration shocks (eqn. 11.1) 
coordinates of the point Z, where the top width of the injected sample 
pulse of the second component shrinks to zero (eqns. 14 and 15) 
coordinates of the point K, where the zones of the two components are 
just resolved (eqns. 20 and 21) 
coordinates of the point L, where the concentration plateau on the tail 
of the second component at C2,n just disappears (eqns. 26 and 27) 
hold-up time of the column (L/u) 
width of the injected pulse (eqn. 11) 
retention time of the two components under linear conditions 
cross-sectional area of the column (eqn. 1.6) 
abscissa along the column (eqn. 10) 

’ The Roman numbers refer to equations in the corresponding Tables (e.g., eqn. IV.5 is the fifth 
equation in Table IV). 
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relative retention of the two components at infinite dilution (eqn. 1.2) 
product of the separation factors (eqn. 2) 
convenient combination of parameters (eqn. 1.3) 
column total porosity (eqn. 1.6) 
adjusted time (eqn. 10) 
duration of injection pulse, in units of adjusted time (eqn. 11) 

Subscripts 

1, 2 lesser and the more retained components of the sample, respectively. 
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